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VARIABLE METRIC METHODS AND FILTERING THEORY

M - - -
'OSR-TR “8-11 02 Sanjoy K. Mitter
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02138

and

Pal Toldalagi
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Canbridge, Massachusetts 02138

ABSTRACT

In this paper we show that there is a close relationship between variable
metric methods of function minimization and filtering of linear stochastic systems
with disturbances which are modelled as unknown but bounded functions. We develop

new variable metric algorithms for function minimization.
1. INTRODUCTION

The objective of this paper is to show that there is a close relationship
between variable metric methods of function minimization and filtering of linear
stochastic systems with disturbances which are modelled as unknown but bounded
functions.

It is well known that Newton's method for function minimization exhibits
quadratic convergence in the neighborhood of the minimum. This rapid -convergence
rate however is obtained at the expense of requiringsecond derivative computations
and solution of a linear equation at each iteration stage. On the other hand,
variable metric methods do not require second derivative computations nor matrix
inversion (solution of a linear equation) and versions of this algorithm are known
to exhibit reasonably rapid convergence. Intuitively, one may consider a variable
metric method as one where an estimate of the Hessian (or inverse of a Hessian) is
obtained on the basis of information on function values and gradient values in past
iterations and the next step is determined on the basis of this estimate. 1In this
paper, we attempt to make this intuitive notion precise. _

The work closest in spirit to this work is the doctoral dissertation of THOMAS
[4). The stochastic models we derive are however, somewhat different and we exploit
linear filtering theory to the fullest extent possible. We obtain algorithms which

do not require accurate line search algorithms as was a2lso done by Thomas.

2. FILTERING MODEL FOR THE ALCORITHM

£ ond roved for publiec release;
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{£(x)|x ®R"} , where : (2.1)




S 2
\
£ is assumed to be thrice continuously differentiadle cn & .
Let
VE(x) = g(x) and@ D2£(x) = G(x) . (2.2)

Let x* be a local minimum of £ and in some ooen, convex neighborhood D of

x* , let us assume
[letx, + 0,5 - Glx_+ 0,5)]] <L|e; = 6,] . || s, ]| » where L >0 (2.3)

for all ’5("‘)( + skeD . all 01,625[0,1].
We wish to discuss iterative algorithms for mininmizing £(x) and the algorithm
proceeds as X4 =X + sk r k =v0,1,2,... .

Let us use the notation

Gk(e) = G(xk + esk)

(204)
g,(6) = glx +86s) , k=0,1,2,... =
It is easy to see that there exists UkeLl(O,ly((Rn)) such that
} e
G, (8) - G (0) = [ U (t)dt , with
0
(2.5)
||uk(e)|| < L||sk|| v k=018, 000496 10,1] .
Also ©
g, (8) = g, (0) + [ 6 (tys 8 . (2.6)
0

Evaluating (2.5) and (2.6) at © = 1, and using the natural notation Gk(l) =

Gk+1 ’ Gk(O) = Gk ’ gk(l) =G4’ etc., we get

1
o =G + [ Uk(t)dt

k+1
0
5 (2.8)

9p1 = % * GSy [ 6 (1) - G (D) de
0
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: Then, we may rewrite (2.8) as . ﬁ l
i ‘
:
| S "% Y%
; : (2.9)
:F gk+1 = gk + Gksk + wk o
It is natural to think of vk and wk as process and opservation noise re .-
pectively. They are obviously correlated. We now atte-pt to bound the noise.
3. BOUNDS ON THE NOISZ
To do the bounding, we use the following device: lLet Yy 3 denote the ish
of G . We then use the isomorphism
» Yi
' S "
i :(R) +>R : Gm . .
Yn

We can then rewrite equation (2.8) in differential form:

d
a8 (in) = wk(e)

(2.10)
d | ]
FT qkte) = (In e sk) (iGi(O)) 3

In the above ' denotes transpose and @ denotes tensor product. Writing (2.16)

in vector-matrix form:

mk(e) 0 0 ick(e) iUk(S)
4a - * . (2.11)
= 9 g, (6) I @s' 0/\q, (8) o}
k n k k

We are interested in bounding vk and v, as t:k () varies over the class of
all mappings given by (2.5). Clearly, the set of all (ivk'wk) as Uk(', varies
is a convex set in g+ /" . Let ﬂk denote the set. W%e can compute the support

function of this set and estimate that the support function‘ nk(Gf.g*), G*Mnn)f, )
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g*e(R)* (* denotes the dual space) satisfies:

n (g < LS |1 |Is, 1211912 + (a*iavsy) + 5% 1% : (2.12)

It is easy to see that an appropriate choice of Uk(-) in the class defined by
(2.5) attains this bound and hence the support function can be computed as:

G* G* 1/2
nk(G*.gt) = Lllsk”{<(g*) ,Qk(g*)>} (2.13)

where <.,-> is the obvious inner product in ,,um“) x & and Qk in the matrix
defined from the right hand side of (2.12). We can check that Qk > 0 (unless
sk = 0).

The above discussions may be combined in the following:

Consider the problem of estimating G, from

k
Gk+1 = Gk + Vk : (2.14)

z, = Gksk + Wy where Zy ™ G4y~ Sx - (2.15)
Let G _egf2 where
o o
n i 2 '
9 = {ced®) <6 - 6, “(6-G)>,<1 (2.16)
n
R
and Go'“o >0 are given .
Then
Proposition 1 !
Vi
d}k » where
Y
n n 1 -1
Q = {(v X&) x ® ‘fn.—k-n- e, R <1} . " (2.17)
S JR") xR

4. SOLUTION OF THE ESTIMATION P2031:ZM

The estimation problem can now be solved using the work of BERTSEKAS [1]. It
consists of recursively estimating the sets P.k , which are ellipsoids. The centre
of the ellipsoid is the desired estimate. These results are summarised in

e




el
" Provosition 2
~ A~ .1 ~
B {G|<G-GK+1, B OGel> 2 I'Yx} (2.18)
+ R
where KK+1 satisfies
Mt G=CPy, » K=0,1,2,...c. : (2.19)
and PK is given by
2 2
3 fisdl .~ Pl
px+1=(1+||sk||) P 4L llskllxn- Lt —eefnd ja st [P et ] } (2.20)
2 =
(s, [B+ EL%lskJJ*n]sk)
< 2
2 o -G, s, L||s
Gpay = Gy + [ Sy kls', (e + 20 1] , (2.21)
(s, [P +L l]skll Ils,)

2

and

= 2
5 5s 1

v
| k 2 Lzllsk!!
L llskll [1+||sk||1s'k[pk+ - Ils, (2.22)
Proposition 3
if Hk = (uk)-l exists and GK+1 is generated by (2.20) - (2.22) then
o [s,-H 2z ]4°
Beyy = B + %07 (2.23)
ak+d'k[sk—szk]
is the inverse of Gx+1' where
s (s, B+ |[s || In] s,)
2 < 1 ' ; (2.24)
llskll
o (B 2 Lain)

‘ a = 2 o (2.25)
i ||sk||
i (sk, [Pk+ > In]sk)




5. NEW ALGORITH!IS FOR FUNCTION g MININIZATION

Since we are looking for an estimate of the Hessian (or inverse of the
Hessian)it is desirable that our estimates are symmetric. This suggests the
following algorithm:

(i) Propagate Hk and Pk according to (2.23) and (2.20)

(ii) sSymmetrize Hk to obtain H: -

(iii) Find the closest approximation Hk to H: so tnat the secant
equation s, = sz is satisfied.

(iv) The new step is computed according to Powell's cog-leg

strategy (cf. POWELL [3])

We now present a number of convergence results corresovonding to the use
of different estimates for the Hemian. :

2Suppose ve update P, and H_ according to (2.20) and (2.23)-(2.25) with
Po=0 I. The new step is chosen according to the formula

) -Hkgk ., and let us update Hk according to

(20, -1) a’
i ™ (1+||sk||)[nk+||sk||1n - g dk' k ]
(s! a
W

NI =o0"1.
o

Vle then have:
Lemma 5.1
> > > .
L>p >0 Vk2>o0

We know, that if Gk is non-singular then

A

e (z -G, s )a*
G =G, + k k X , k=20,1,2,.04
K+1 k o

K

We can then show
Lemma 5.2
There exists a u>0, such that

le-6, 11% <, x> o0.

These ideas enable us to prove the following basic convergence theorem:

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)
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Theo}em 5.3

n n ; 5 ; s

Let g: R - R be differentiable in an open convax neighborhood D of x*,
where x* satisfies g(x*)=0 and we also have Dg(x*) = G(x*) is non-singular. Let
us suppose that G(+) satisfies

lletx)-cty) ]| < L]|x-y|],vx,yeD. (5.6)

Then for each Y > 0, re[0,1], 36=8(y,r), e=e(Y,r) such that if ||x -x*|| <$
and ||G -G ||<Yo, oel0,€], then, the sequence

-~
Xer1 = X ~ (G Ty (5.7)

converges to x*.

Moreover
||xk+1-x*|| §y||xk-x*|| and the sequence (5.8)
(llh D and (“A I are uniformly bounded.
Gk =0,1,... Hk - k=0,1,...

Theorem 5.3 shows that we obtain linear coﬁvergence. One can show that the

convergence is actually superlinear. i
So far we have constructed an algorithm which uses the output of the filter

directly. As we have previously remarked it would bs desirable to "symmetrize"

the estimate and use this as in the algorithm. It can be shown that an algorithm

using the symmetrized estimate converges linearly under the same hypotheses as

that of Theorem 5.3. However a proof of convergence of the algorithm when

the estimates are also chosen to satisfy the secant eguation is at present

not available. The details of the proof of the various results, presented in

this paper will appear elsewhere [cf. MITTER-TOLDALAGI [2] ].
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